פונקציה - הגדרה ותכונות בסיסיות, הפונקציה הלינארית, הפונקציה הריבועית, הפונקציה המעריכית, הפונקציה ה...הצג הכל
פונקציה - הגדרה ותכונות בסיסיות, הפונקציה הלינארית, הפונקציה הריבועית, הפונקציה המעריכית, הפונקציה הלוגריתמית, פונקציית החזקה עבור מעריכים שונים, פונקציית הערך המוחלט, פונקציית הערך השלם, הזזות שיקופים מתיחות וכיווצים של פונקציה, תחום הגדרה של פונקציה, הרכבת פונקציות, הפונקציה ההפוכה, פונקציה זוגית ופונקציה אי זוגית, פונקציה מפוצלת, קשרים וכמתים לוגיים, קבוצה, איבר של קבוצה, שייכות לקבוצה, שוויון בין קבוצות, קבוצה סופית, קבוצה אינסופית, הקבוצה הריקה, תת קבוצה.
טכניקות לחישוב גבול של פונקציה, הצבה, פירוק לגורמים, הכפלה בצמוד, שאיפה לאינסוף, פונקציה השואפת לאינ...הצג הכל
טכניקות לחישוב גבול של פונקציה, הצבה, פירוק לגורמים, הכפלה בצמוד, שאיפה לאינסוף, פונקציה השואפת לאינסוף, כלל הסנדוויץ , הגבול של אוילר, גבול לפונקציה מפוצלת, גבול לפי הגדרה
נגזרת הפונקציות היסודיות, נגזרת סכום הפרש מכפלה ומנה, נגזרת פונקציה מורכבת (כלל השרשרת), נגזרת פונקצ...הצג הכל
נגזרת הפונקציות היסודיות, נגזרת סכום הפרש מכפלה ומנה, נגזרת פונקציה מורכבת (כלל השרשרת), נגזרת פונקציה עם פרמטר, הנגזרת השנייה, נגזרת פונקציה בחזקת פונקציה, נגזרת פונקציה סתומה, גזירה לוגריתמית.
משיק, שיפוע של פונקציה, הזווית בין משיק לציר x, משיק אנכי, בעיות משיקים ללא שימוש בנוסחת המשיק, בעיו...הצג הכל
משיק, שיפוע של פונקציה, הזווית בין משיק לציר x, משיק אנכי, בעיות משיקים ללא שימוש בנוסחת המשיק, בעיות משיקים עם שימוש בנוסחת המשיק, הנורמל, זווית בין שתי עקומות, נוסחת הקירוב הליניארי (הדיפרנציאל השלם).
גבול מהצורה אפס חלקי אפס ואינסוף חלקי אינסוף, גבול מהצורה אפס כפול אינסוף, גבול מהצורה אינסוף פחות א...הצג הכל
גבול מהצורה אפס חלקי אפס ואינסוף חלקי אינסוף, גבול מהצורה אפס כפול אינסוף, גבול מהצורה אינסוף פחות אינסוף, גבול מהצורה אחד בחזקת אינסוף, מקרים בהם כלל לופיטל נכשל.
תחום הגדרה, זוגיות, חיתוך עם הצירים, נקודות קיצון, משפט פרמה, תחומי עליה וירידה, נקודות פיתול, תחומי...הצג הכל
תחום הגדרה, זוגיות, חיתוך עם הצירים, נקודות קיצון, משפט פרמה, תחומי עליה וירידה, נקודות פיתול, תחומי קמירות וקעירות, אסימפטוטה אנכית, אסימפטוטה אופקית, אסימפטוטה משופעת, גרף, חקירה של פולינום, פונקציה רציונלית, פונקציה מעריכית, פונקציה לוגריתמית, פונקציית שורש, פונקציה טריגונומטרית, פונקציה טריגונומטרית הפוכה, פונקצית ערך מוחלט, פונקציה לא גזירה.
כמעט בכל מבחן בחדו"א יש חקירת פונקציה. לעיתים משלבים סעיפים מקדימים לחקירה ולעיתים משלבים סעיפים שמג...הצג הכל
כמעט בכל מבחן בחדו"א יש חקירת פונקציה. לעיתים משלבים סעיפים מקדימים לחקירה ולעיתים משלבים סעיפים שמגיעים אחרי סיום החקירה. פרק זה עוסק בשאלות מסוג זה. כמו כן, בפרק הוכחת אי שוויונים שלשם פתרונם משתמשים בחקירת פונקציה.
הגדרת קיצון מקומי וקיצון מוחלט (גלובלי) לפונקציה. מציאת קיצון מוחלט בקטע סגור, מציאת קיצון מוחלט בקט...הצג הכל
הגדרת קיצון מקומי וקיצון מוחלט (גלובלי) לפונקציה. מציאת קיצון מוחלט בקטע סגור, מציאת קיצון מוחלט בקטע פתוח, הוכחת אי שוויונים.
בעיות קיצון עם מספרים, בעיות קיצון בהנדסת המישור, בעיות קיצון בפונקציות וגרפים, בעיות קיצון בהנדסת ה...הצג הכל
בעיות קיצון עם מספרים, בעיות קיצון בהנדסת המישור, בעיות קיצון בפונקציות וגרפים, בעיות קיצון בהנדסת המרחב. הערה: בעיות קיצון הוא נושא שמופיע בבגרות 5 יחידות לימוד מתמטיקה והוא מופיע בדיוק באותו האופן גם בבחינות באקדמיה אם כי בסבירות לא גבוהה. רמת השאלות כאן מתאימה לרמת השאלות באקדמיה ולעיתים אף עולה עליה.
מהו אינטגרל טריגונומטרי, פתרון אינטגרל טריגונומטרי על ידי זהויות טריגונומטריות, פתרון אינטגרל טריגונ...הצג הכל
מהו אינטגרל טריגונומטרי, פתרון אינטגרל טריגונומטרי על ידי זהויות טריגונומטריות, פתרון אינטגרל טריגונומטרי על ידי הצבה, פתרון אינטגרל עם שורשים על ידי הצבה טריגונומטרית, חישוב שטחים בין פונקציות טריגונומטריות.
חישוב שטח בין גרף פונקציה לבין ציר x , חישוב שטח בין גרפים של שתי פונקציות, חישוב שטחים מורכבים, חיש...הצג הכל
חישוב שטח בין גרף פונקציה לבין ציר x , חישוב שטח בין גרפים של שתי פונקציות, חישוב שטחים מורכבים, חישוב שטח ביחס לציר y (שאלות 31 ו- 32), חישוב אורך עקום. הערה: חלק מהנושאים בפרק זה מופיעים גם בבגרות 5 יחידות לימוד מתמטיקה , אין זה אומר שהם אינם יכולים להופיע בבחינות באקדמיה.
בעיות קיצון כלכליות מסוג ראשון, בעיות קיצון כלכליות מסוג שני, בעיות קיצון יסודיות עם מספרים, בעיות ק...הצג הכל
בעיות קיצון כלכליות מסוג ראשון, בעיות קיצון כלכליות מסוג שני, בעיות קיצון יסודיות עם מספרים, בעיות קיצון בפונקציות וגרפים, בעיות קיצון בהנדסת המישור
מטריצות, שוויון בין מטריצות, פעולות בין מטריצות, המטריצה המשוחלפת מוחלפת, מטריצה היחידה, כתיב מטריצי...הצג הכל
מטריצות, שוויון בין מטריצות, פעולות בין מטריצות, המטריצה המשוחלפת מוחלפת, מטריצה היחידה, כתיב מטריציאלי של מערכת משוואות, מטריצה סימטרית ומטריצה אנטי-סימטרית, המטריצה ההפוכה, פתרון מערכת משוואות בעזרת המטריצה ההפוכה, פולינום של מטריצה, מטריצה אלמנטרית, פירוק LU
מציאת כמות סופית, מציאת כמות התחלתית, מציאת אחוז הגדילה או הדעיכה, מציאת הזמן, שאלות מסכמות בגדילה ו...הצג הכל
מציאת כמות סופית, מציאת כמות התחלתית, מציאת אחוז הגדילה או הדעיכה, מציאת הזמן, שאלות מסכמות בגדילה ודעיכה.
מרחק בין נקודות, אמצע קטע, משוואת הישר, שיפוע של ישר, מציאת משוואת ישר לפי נקודה ושיפוע או שתי נקודו...הצג הכל
מרחק בין נקודות, אמצע קטע, משוואת הישר, שיפוע של ישר, מציאת משוואת ישר לפי נקודה ושיפוע או שתי נקודות, חלוקת קטע ביחס נתון, מרחק בין ישרים, מרחק בין נקודה וישר.
מהו וקטור אלגברי, וקטור שמוצאו אינו בראשית הצירים, אמצע קטע וחלוקת קטע ביחס נתון, מכפלה סקלרית וגודל...הצג הכל
מהו וקטור אלגברי, וקטור שמוצאו אינו בראשית הצירים, אמצע קטע וחלוקת קטע ביחס נתון, מכפלה סקלרית וגודל של וקטור בהצגה אלגברית, הצגה פרמטית של ישר, מצב הדדי בין ישרים במרחב, הצגה פרמטרית של מישור, משוואת מישור, מצב הדדי בין מישורים במרחב, ישר חיתוך בין שני מישורים, זווית בין שני ישרים, זווית בין ישר ומישור, זווית בין שני מישורים, מרחק בין שתי נקודות במרחב, מרחק בין נקודה לישר, מרחק בין נקודה למישור, מרחק בין ישר ומישור, מרחק בין מישורים מקבילים, מרחק בין ישרים מצטלבים.
מערכת משוואות לינאריות, מספר הפתרונות של מערכת משוואות לינאריות, מערכת משוואות לינאריות מדורגת, תהלי...הצג הכל
מערכת משוואות לינאריות, מספר הפתרונות של מערכת משוואות לינאריות, מערכת משוואות לינאריות מדורגת, תהליך הדירוג/החילוץ של גאוס לפתרון מערכת משוואות לינאריות, מערכת משוואות ליניאריות הומוגנית, הקשר שבין מערכת משוואות לינאריות למערכת ההומוגנית המתאימה לה, שימושים של מערכות משוואות לינאריות.
הגדרת דטרמיננטה, כללי דטרמיננטות, כלל קרמר, מטריצה צמודה קלאסית, חישוב המטריצה ההופכית בעזרת דטרמיננ...הצג הכל
הגדרת דטרמיננטה, כללי דטרמיננטות, כלל קרמר, מטריצה צמודה קלאסית, חישוב המטריצה ההופכית בעזרת דטרמיננטות, שימושי הדטרמיננטה.